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Online Supplement A. Derivation of the distribution of observed earnings in model (1)–(3) 

Let 𝑚 ∈ {0,1} be the earnings management decision (𝑚 = 0 when earnings are reported “as is” 

and 𝑚 = 1 when earnings are managed to report a small profit). After integrating out unobservable 

𝐸𝐴𝑅𝑁∗ and 𝑚, the probability density function of reported earnings is  

𝑓(𝐸𝐴𝑅𝑁|𝑋) = ∫ ∑ 𝑓(𝐸𝐴𝑅𝑁|𝐸𝐴𝑅𝑁∗, 𝑚, 𝑋) Pr(𝑚|𝐸𝐴𝑅𝑁∗, 𝑋)

𝑚=0,1

𝑓∗(𝐸𝐴𝑅𝑁∗|𝑋)𝑑𝐸𝐴𝑅𝑁∗

𝐸𝐴𝑅𝑁∗

 (𝐴1) 

where 𝑓(𝐸𝐴𝑅𝑁|𝐸𝐴𝑅𝑁∗, 𝑚, 𝑋) is the density of reported earnings conditional on pre-managed 

earnings 𝐸𝐴𝑅𝑁∗, the earnings management decision 𝑚, and explanatory variables 𝑋. 

We simplify (A1) for three scenarios on 𝐸𝐴𝑅𝑁. 
Case 1: 𝐸𝐴𝑅𝑁 < −𝐾− or 𝐸𝐴𝑅𝑁 ≥ 𝐾+, i.e., a large loss or a large profit. The conditional 

density 𝑓(𝐸𝐴𝑅𝑁|𝐸𝐴𝑅𝑁∗, 𝑚, 𝑋) is non-zero only for 𝐸𝐴𝑅𝑁∗ = 𝐸𝐴𝑅𝑁 and 𝑚 = 0.1 Equation (A1) 

simplifies to  

𝑓(𝐸𝐴𝑅𝑁|𝑋) = Pr(𝑚 = 0|𝐸𝐴𝑅𝑁∗ = 𝐸𝐴𝑅𝑁, 𝑋) 𝑓∗(𝐸𝐴𝑅𝑁∗ = 𝐸𝐴𝑅𝑁|𝑋) (𝐴2) 

where Pr(𝑚 = 0|𝐸𝐴𝑅𝑁∗ = 𝐸𝐴𝑅𝑁, 𝑋) = 1 − 𝑃(𝐸𝐴𝑅𝑁∗ = 𝐸𝐴𝑅𝑁, 𝑋) = 1 because 𝐸𝐴𝑅𝑁 ∉
[−𝐾−, 0). Therefore, (A2) simplifies to equation (4a) in Section 2 

𝑓(𝐸𝐴𝑅𝑁|𝑋) = 𝑓∗(𝐸𝐴𝑅𝑁∗ = 𝐸𝐴𝑅𝑁|𝑋) (4𝑎) 

Case 2: 𝐸𝐴𝑅𝑁 ∈ [−𝐾−, 0), i.e., a small loss. The conditional density 𝑓(𝐸𝐴𝑅𝑁|𝐸𝐴𝑅𝑁∗, 𝑚, 𝑋) 

is non-zero only for 𝐸𝐴𝑅𝑁∗ = 𝐸𝐴𝑅𝑁 and 𝑚 = 0.2 Therefore, (A1) simplifies to (A2), similar to 

Case 1. For 𝐸𝐴𝑅𝑁 ∈ [−𝐾−, 0), Pr(𝑚 = 0|𝐸𝐴𝑅𝑁∗ = 𝐸𝐴𝑅𝑁, 𝑋) = 1 − 𝑃(𝐸𝐴𝑅𝑁∗ = 𝐸𝐴𝑅𝑁, 𝑋). 

Therefore, (A2) simplifies to equation (4b) in Section 2 

𝑓(𝐸𝐴𝑅𝑁|𝑋) = [1 − 𝑃(𝐸𝐴𝑅𝑁∗ = 𝐸𝐴𝑅𝑁, 𝑋)]𝑓∗(𝐸𝐴𝑅𝑁∗ = 𝐸𝐴𝑅𝑁|𝑋) (4𝑏) 

Case 3: 𝐸𝐴𝑅𝑁 ∈ [0, 𝐾+), i.e., a small profit. The conditional density 𝑓(𝐸𝐴𝑅𝑁|𝐸𝐴𝑅𝑁∗, 𝑚, 𝑋) 

is non-zero in two situations: (a) 𝑚 = 0 and 𝐸𝐴𝑅𝑁∗ = 𝐸𝐴𝑅𝑁, and (b) 𝑚 = 1 and 𝐸𝐴𝑅𝑁∗ ∈
[−𝐾−, 0). Therefore, (A.1) becomes 

𝑓(𝐸𝐴𝑅𝑁|𝑋) = Pr(𝑚 = 0|𝐸𝐴𝑅𝑁∗ = 𝐸𝐴𝑅𝑁, 𝑋) 𝑓∗(𝐸𝐴𝑅𝑁∗ = 𝐸𝐴𝑅𝑁|𝑋) +

∫ 𝑓(𝐸𝐴𝑅𝑁|𝐸𝐴𝑅𝑁∗, 𝑚 = 1, 𝑋) Pr(𝑚 = 1|𝐸𝐴𝑅𝑁∗, 𝑋) 𝑓∗(𝐸𝐴𝑅𝑁∗|𝑋)𝑑𝐸𝐴𝑅𝑁∗

0

−𝐾−

 (𝐴3)
 

In the first line of (A3), Pr(𝑚 = 0|𝐸𝐴𝑅𝑁∗ = 𝐸𝐴𝑅𝑁, 𝑋) = 1 because 𝐸𝐴𝑅𝑁 ∉ [−𝐾−, 0). In 

the second line of (A3), 𝑓(𝐸𝐴𝑅𝑁|𝐸𝐴𝑅𝑁∗, 𝑚 = 1, 𝑋) = 𝑔(𝐸𝐴𝑅𝑁|𝐸𝐴𝑅𝑁∗, 𝑋) per (2b) and 

Pr(𝑚 = 1|𝐸𝐴𝑅𝑁∗, 𝑋) = 𝑃(𝐸𝐴𝑅𝑁∗, 𝑋). Therefore, (A3) simplifies to equation (4c) in Section 2 

𝑓(𝐸𝐴𝑅𝑁|𝑋) = 𝑓∗(𝐸𝐴𝑅𝑁∗ = 𝐸𝐴𝑅𝑁|𝑋) + 𝐺(𝐸𝐴𝑅𝑁, 𝑋) (4𝑐) 

where  

𝐺(𝐸𝐴𝑅𝑁, 𝑋) = ∫ 𝑔(𝐸𝐴𝑅𝑁|𝐸𝐴𝑅𝑁∗, 𝑋)𝑃(𝐸𝐴𝑅𝑁∗, 𝑋)𝑓∗(𝐸𝐴𝑅𝑁∗|𝑋)𝑑𝐸𝐴𝑅𝑁∗

0

−𝐾−

 (𝐴4) 

  

 
1 When 𝑚 = 1 (i.e., earnings are managed to report a small profit), the probability of reporting a large loss or a large 

profit is zero. When 𝑚 = 0 (i.e., no earnings management), reported 𝐸𝐴𝑅𝑁 must equal the pre-managed 𝐸𝐴𝑅𝑁∗. 

Because 𝑓(𝐸𝐴𝑅𝑁|𝐸𝐴𝑅𝑁∗, 𝑚, 𝑋) collapses to a mass point with weight 1, it drops out of the computation. 
2 When 𝑚 = 1, the probability of reporting a small loss is zero. When 𝑚 = 0, reported 𝐸𝐴𝑅𝑁 must equal the pre-

managed 𝐸𝐴𝑅𝑁∗.  



2 

 

Online Supplement B. Implementation details of maximum likelihood (ML) estimation  

For each firm-year observation 𝑖, 𝑡, the log-likelihood is ln 𝑓(𝐸𝐴𝑅𝑁𝑖,𝑡|𝑋𝑖,𝑡) as defined in (4a)– 

(6b), where 𝐸𝐴𝑅𝑁𝑖,𝑡 and 𝑋𝑖,𝑡 are from the data, and the coefficient vector comprises 𝛼0,0 … 𝛼𝑃,𝐽 

and 𝜋0 … 𝜋𝐽. Maximum likelihood estimation finds the coefficients 𝛼0,0 … 𝛼𝑃,𝐽 and 𝜋0 … 𝜋𝐽 that 

maximize the total log-likelihood for the sample.3 We code the log-likelihood as a user-defined 

Stata function. The ml command in Stata takes this function as an input and handles the numerical 

optimization and the computation of the standard errors. 

We estimate the model for the subsample with earnings in a relatively narrow interval [−𝑅, 𝑅) 

around zero (e.g., 𝐸𝐴𝑅𝑁 ∈ [−0.04, 0.04) for our main definitions), as illustrated in Panel C of 

Figure 3. Although this approach involves selection on the dependent variable, we show that it 

yields the same parameter estimates as conventional maximum likelihood estimation on the full 

sample. The conventional ML approach solves 

max
𝜃

∑ ln 𝑓(𝐸𝐴𝑅𝑁𝑖,𝑡|𝑋𝑖,𝑡)

𝑖=1…𝑁,𝑡=1…𝑇

=

= max
𝜃

( ∑ ln 𝑓(𝐸𝐴𝑅𝑁𝑖,𝑡|𝑋𝑖,𝑡)

𝑖,𝑡: 𝐸𝐴𝑅𝑁𝑖,𝑡∈[−𝑅,𝑅)

+ ∑ ln 𝑓(𝐸𝐴𝑅𝑁𝑖,𝑡|𝑋𝑖,𝑡)

𝑖,𝑡: 𝐸𝐴𝑅𝑁𝑖,𝑡∉[−𝑅,𝑅)

) (𝐵1)

 

where 𝜃 is the full parameter vector, which comprises 𝛼0,0 … 𝛼𝑃,𝐽, 𝜋0 … 𝜋𝐽, and additional 

parameters that determine the earnings distribution outside [−𝑅, 𝑅);  𝑓(𝐸𝐴𝑅𝑁𝑖,𝑡|𝑋𝑖,𝑡) is the 

probability density function of reported earnings from equations (4a)–(4c), evaluated at the 

parameter values 𝜃; and [−𝑅, 𝑅) is the earnings interval used in our subsample-specific estimation.  

Suppose that a researcher uses a separate subset of parameters 𝜃𝑜𝑢𝑡𝑠𝑖𝑑𝑒 for the pre-managed 

earnings distribution outside the estimation interval [−𝑅, 𝑅). From equations (4a)–(4c) in Section 

2, all other components of 𝜃 (i.e., the pre-managed distribution parameters 𝛼0,0 … 𝛼𝑃,𝐽 for the 

interval [−𝑅, 𝑅) and the earnings management parameters 𝜋0 … 𝜋𝐽) affect the likelihood only for 

observations with reported earnings inside [−𝑅, 𝑅). Therefore, (B1) can be rewritten as  

max
𝜋0…𝜋𝐽, 𝛼0,0…𝛼𝑃,𝐽

∑ ln 𝑓(𝐸𝐴𝑅𝑁𝑖,𝑡|𝑋𝑖,𝑡)

𝑖,𝑡: 𝐸𝐴𝑅𝑁𝑖,𝑡∈[−𝑅,𝑅)

+ max
𝜃𝑜𝑢𝑡𝑠𝑖𝑑𝑒

∑ ln 𝑓(𝐸𝐴𝑅𝑁𝑖,𝑡|𝑋𝑖,𝑡)

𝑖,𝑡: 𝐸𝐴𝑅𝑁𝑖,𝑡∉[−𝑅,𝑅)

 (𝐵2) 

The first maximization in this expression is equivalent to our maximum likelihood estimation 

procedure for the subsample with earnings in the interval [−𝑅, 𝑅). It fully determines all of the 

parameters that we are interested in, i.e., 𝛼0,0 … 𝛼𝑃,𝐽 and 𝜋0 … 𝜋𝐽. Therefore, our estimation of 

𝛼0,0 … 𝛼𝑃,𝐽 and 𝜋0 … 𝜋𝐽 on the restricted sample is equivalent to conventional maximum likelihood 

estimation on the full sample with an additional parameter vector 𝜃𝑜𝑢𝑡𝑠𝑖𝑑𝑒. 

  

 
3 For each observation 𝑖, 𝑡, we normalize the probability density function (6a) by imposing the standard restriction that 

the total mass ∫ 𝑓(𝐸𝐴𝑅𝑁|𝑋𝑖,𝑡)𝑑𝐸𝐴𝑅𝑁 of the conditional earnings distribution must equal 1. Without this 

normalization, the ML estimation procedure would artificially drive the log-likelihood to infinity by increasing the 

coefficients 𝛼 to infinity. This issue is specific to ML estimation. In our two-stage method, the estimates minimize the 

distance between predicted and actual bin frequencies conditional on X, and thus the actual bin frequencies directly 

determine the scale of the density parameters, removing the need for an explicit normalization.  
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Online Supplement C. Implementation details of the two-stage estimation method 

We omit the firm and year indexes for brevity. To prepare the data, we restrict the sample to 

observations with scaled earnings 𝐸𝐴𝑅𝑁 in the estimation interval (Panel C of Figure 3) and 

convert each of these firm-year observations into 𝐵 firm-year-bin observations with a dummy 

dependent variable 𝑌𝑏 (𝑏 = 1 … 𝐵) that equals 1 if 𝐸𝐴𝑅𝑁 is in bin 𝑏 and 0 otherwise. Because our 

estimation equations pool all relevant bins, the bin grid can have many bins in the small-loss and 

small-profit intervals (versus just one bin for each interval in the standard tests). The maximum 

number of bins in practice is restricted only by computation time and available memory. 

Stage 1 uses all firm-years in the estimation sample; for each firm-year, we only include firm-

year-bins outside the small-loss and small-profit intervals, as illustrated in Panel A of Figure 4.4 

We estimate a discrete version of equation (6a) for a pooled sample of these bins 

𝑌𝑏 = 𝛼0(𝑋)  + 𝛼1(𝑋) × 𝑧𝑏  +  𝛼2(𝑋) × 𝑧𝑏
2 + ⋯ +  𝛼𝑃(𝑋) × 𝑧𝑏

𝑃 + 𝜀𝑏 (𝐶1) 

where the polynomial coefficients 𝛼𝑝(𝑋) = 𝛼𝑝,0 + 𝛼𝑝,1𝑋1 + ⋯ + 𝛼𝑝,𝐽𝑋𝐽 follow (6b), 𝑋 = 𝑋1 … 𝑋𝐽 

are the explanatory variables for the firm-year, and 𝑧𝑏 is the midpoint of earnings bin 𝑏. Because 

the dependent variable 𝑌𝑏 is binary, the predicted value in regression (C1) captures the bin 

probability 𝑃𝑟(𝑌𝑏 = 1|𝑋, 𝑧𝑏) conditional on explanatory variables 𝑋.5 This probability 

interpretation follows the linear probability model (e.g., Wooldridge, 2002, Ch. 15), and the 

pooling of data for all relevant bins imposes the smooth polynomial structure (C1) across the bins.  

Stage 2 uses all firm-years in the estimation sample; for each firm-year, we only include firm-

year-bins inside the small-loss and small-profit intervals (Panel B of Figure 4). The regression 

model is  

𝑌𝑏 − �̂�𝑏 = (𝜋0 + 𝜋1𝑋1 + ⋯ + 𝜋𝐽𝑋𝐽) × 𝑊𝑏 + 𝑢𝑏 (𝐶2) 

where �̂�𝑏 is the predicted probability of bin 𝑏 for the firm-year based on the pre-managed earnings 

distribution (C1) from stage 1, 𝑌𝑏 − �̂�𝑏 is the deviation from the pre-managed distribution, 𝜋0 … 𝜋𝐽 

are the earnings management parameters, and 𝑊𝑏 is a synthetic explanatory variable shown in 

Panel C of Figure 4 that embeds the earnings management definitions of Models I and II.  

For the small-loss bins, 𝑊𝑏 is defined as −�̂�𝑏 in Model I and −𝑞(𝑧𝑏) × �̂�𝑏 in Model II, where 

𝑞(𝑧𝑏) is the triangular interaction term from (5b). These definitions implement the dip in the 

density of small losses due to earnings management, represented by −𝑓∗(𝐸𝐴𝑅𝑁|𝑋)𝑃(𝐸𝐴𝑅𝑁, 𝑋) 

in equation (4b). In Model I, 𝑃(𝐸𝐴𝑅𝑁, 𝑋) is flat with respect to the size of the small loss 𝐸𝐴𝑅𝑁 

(Panel A of Figure 3), and thus the dip is proportional to the pre-managed earnings density 

𝑓∗(𝐸𝐴𝑅𝑁|𝑋), approximated by �̂�𝑏. In Model II, the earnings management probability is triangular 

with respect to 𝐸𝐴𝑅𝑁 (Panel B of Figure 3), and thus the dip is proportional to the triangular 

interaction term 𝑞(𝑧𝑏) times the pre-managed density approximated by �̂�𝑏.  

For the small-profit bins, 𝑊𝑏 is defined as −
𝐾−

𝐾+ 𝑊𝑚𝑒𝑎𝑛 in Model I and −𝑞(𝑧𝑏)
𝐾−

𝐾+ 𝑊𝑚𝑒𝑎𝑛 in 

Model II, where the ratio 𝐾− 𝐾+⁄  adjusts for the relative widths of the small-loss and small-profit 

intervals, 𝑊𝑚𝑒𝑎𝑛 is the mean of 𝑊𝑏 across the small-loss bins for the firm-year, and 𝑞(𝑧𝑏) is the 

triangular interaction term for small profits. These definitions implement the bump in the density 

 
4 In both stages, this bin selection is unrelated to reported earnings for the year. For example, firm-years with small 

(moderately large) profits are included in stage 1 (stage 2), but all of the included bin dummies equal zero.  
5 The discrete bin probability (C1) approximates the integral of the continuous density function (6a) for the bin using 

the function value at the bin midpoint. Therefore, the empirical coefficients 𝛼 in (C1) are not entirely equivalent to 

the theoretical 𝛼 in (6a). Because the 𝛼-s are not individually interpretable (as parts of a polynomial), and their only 

job is to approximate the underlying smooth distribution, we slightly abuse the notation and reuse 𝛼 in (C1) for brevity.  



4 

 

of small profits due to earnings management, represented by 𝐺(𝐸𝐴𝑅𝑁, 𝑋) in equation (4c). For 

each firm-year, the total probability of the bump for small profits must equal the total probability 

of the dip for small losses (Panel C of Figure 1). In both models, this restriction is implemented 

through 
𝐾−

𝐾+ 𝑊𝑚𝑒𝑎𝑛. In Model I, 𝐺(𝐸𝐴𝑅𝑁, 𝑋) is flat with respect to the size of the small profit 𝐸𝐴𝑅𝑁 

(Panel A of Figure 3), and thus 𝑊𝑏 does not require any further adjustments. In Model II, 

𝐺(𝐸𝐴𝑅𝑁, 𝑋) is triangular (Panel B of Figure 3), and thus 𝑊𝑏 incorporates the triangular interaction 

term 𝑞(𝑧𝑏).  

Standard errors of the two-stage estimates 

Because the explanatory variables in the second-stage regression (C2) are constructed based on 

the first-stage estimates �̂� = (�̂�0,0 … �̂�𝑃,𝐽)′ from (C1), the standard errors of �̂� = (�̂�0 … �̂�𝐽)′ in the 

second stage should be adjusted for the first-stage estimation noise. The usual OLS standard errors 

(with appropriate clustering) do not incorporate this adjustment and should not be used.6 

Using the method of moments representation of OLS (e.g., Wooldridge, 2002, Ch. 14), the 

regression estimates �̂� and �̂� in the two stages (C1) and (C2) are defined by the moment conditions 

ℎ̅(�̂�) =
1

𝑁
∑ (𝑌𝑖,𝑡,𝑏 − �̂�′𝑃𝑖,𝑡,𝑏)𝑃𝑖,𝑡,𝑏 = 0
𝑖,𝑡,𝑏:

𝑏∉𝑠𝑚𝑎𝑙𝑙 𝑙𝑜𝑠𝑠/𝑝𝑟𝑜𝑓𝑖𝑡 𝑏𝑖𝑛𝑠
 

   (𝐶3)
 

�̅�(�̂�, �̂�) =
1

𝑁
∑ (𝑌𝑖,𝑡,𝑏 − �̂�𝑖,𝑡,𝑏(�̂�) − �̂�′𝑄𝑖,𝑡,𝑏(�̂�))𝑄𝑖,𝑡,𝑏(�̂�) = 0
𝑖,𝑡,𝑏:

𝑏∈𝑠𝑚𝑎𝑙𝑙 𝑙𝑜𝑠𝑠/𝑝𝑟𝑜𝑓𝑖𝑡 𝑏𝑖𝑛𝑠

 (𝐶4)
 

where 𝑃𝑖,𝑡,𝑏 is the full vector of explanatory variables in stage 1 (i.e., 1, 𝑧𝑏, 𝑧𝑏
2 … 𝑧𝑏

𝑃 and its 

interactions with 𝑋𝑖,𝑡,1 … 𝑋𝑖,𝑡,𝐽), �̂�𝑖,𝑡,𝑏(�̂�) is the predicted value from stage 1, and 𝑄𝑖,𝑡,𝑏(�̂�) is the 

full vector of explanatory variables in stage 2 (i.e., 𝑊𝑖,𝑡,𝑏 and its interactions with 𝑋𝑖,𝑡,1 … 𝑋𝑖,𝑡,𝐽). 

The estimation noise in �̂� affects the second-stage standard errors through both �̂�𝑖,𝑡,𝑏(�̂�) and 

𝑄𝑖,𝑡,𝑏(�̂�) in (C4). 

The Taylor expansion of (C3) and (C4) around the true values 𝛼∗ and 𝜋∗ is 

[
ℎ̅(�̂�)

�̅�(�̂�, �̂�)
] ≈ [

ℎ̅(𝛼∗)

�̅�(𝛼∗, 𝜋∗)
] + [

∇𝛼ℎ̅ 0
∇𝛼�̅� ∇𝜋�̅�

] [
�̂� − 𝛼∗

�̂� − 𝜋∗]  (𝐶5) 

After combining (C5) with (C3) and (C4), we have  

[
�̂� − 𝛼∗

�̂� − 𝜋∗] ≈ − [
∇𝛼ℎ̅ 0
∇𝛼�̅� ∇𝜋�̅�

]
−1

[
ℎ̅(𝛼∗)

�̅�(𝛼∗, 𝜋∗)
] (𝐶6) 

From (C6), the asymptotic covariance matrix of the estimates �̂� and �̂� is  

𝐶𝑜𝑣 (√𝑁 [
�̂�
�̂�

]) = Γ′ΩΓ (𝐶7𝑎) 

where 

Γ = (−𝑝𝑙𝑖𝑚 [
∇𝛼ℎ̅ 0
∇𝛼�̅� ∇𝜋�̅�

])
−1

 (𝐶7𝑏) 

Ω = 𝐶𝑜𝑣 (√𝑁 [
ℎ̅(𝛼∗)

�̅�(𝛼∗, 𝜋∗)
]) (𝐶7𝑐) 

 
6 In untabulated simulations, conventional single-stage clustered standard errors are biased downward slightly, as 

expected, which leads to moderate over-rejection in hypothesis tests. Our adjustment resolves this bias. Because the 

bin dummies are mutually exclusive, the bin-level observations are correlated within each firm-year. Therefore, our 

adjustment must be combined with clustering to address the within-firm-year correlation.  
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Because �̂� and �̂� converge in probability to the (unknown) true values  𝛼∗ and 𝜋∗, the matrices Γ 

and Ω can be evaluated at �̂� and �̂� instead of 𝛼∗ and 𝜋∗. The covariance matrix Ω of the moment 

conditions is clustered as needed. Our Stata command incorporates these computations. 
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Online Supplement D. Type-I error and power simulations for basic distribution 

discontinuity tests without explanatory variables 

We generate 1,000 artificial samples of pre-managed earnings 𝐸𝐴𝑅𝑁∗ on the estimation 

interval [−0.04, 0.04), using the earnings distribution parameters from the main empirical 

specification (column 4 in Panel A of Table 2), for sample size 𝑁 = 5,000 (less than 1/6 of our 

main sample) and 𝑁 = 30,000 (slightly less than the main sample). In Type-I error simulations, 

the null hypothesis of no earnings management is true, and therefore we do not manage simulated 

earnings. In test power simulations, we convert some of the small losses into small profits per 

Model II with the true earnings management probability 𝜋0
𝑡𝑟𝑢𝑒 = 0.025 and 0.05 (i.e., 2.5% or 5% 

of small losses are managed on average). For each simulated sample, we test for earnings 

discontinuity using Burgstahler and Dichev (1997) standardized difference tests, the main two-

stage version of our method, and the ML version of our method as an asymptotically efficient 

benchmark (Wooldridge, 2002).  

Table D1 presents the simulated rejection rates. Columns 1 and 4 reflect Type-I error. The left 

standardized difference test in column 4 has a slightly elevated Type-I error of 6.6%, while all 

other Type-I errors for all tests are in line with the nominal level.7  

Consistent with Burgstahler and Chuk’s (2014) simulations, the standardized difference test 

successfully detects earnings management. For example, when 𝜋0
𝑡𝑟𝑢𝑒 = 0.025, earnings 

management affects just 13 observations on average out of 𝑁 = 5,000 and 80 out of 𝑁 = 30,000.8 

The rejection rates based on the left (right) standardized difference are 22.0% and 59.3% (15.9% 

and 42.4%) for 𝑁 = 5,000 and 30,000, respectively. When 𝜋0
𝑡𝑟𝑢𝑒 = 0.05, the rejection rates are 

44.3% and 97.7% (36.5% and 92.3%), respectively. 

Across all test power scenarios in Table D1, the rejection rate in the left standardized difference 

test is considerably higher than that in the right standardized difference test. This asymmetry is an 

artifact of the linear interpolation used in these tests. Because the simulated distribution of pre-

managed earnings is convex, following the empirical estimates shown in Figure 7, the linear 

interpolation overstates the missing earnings density below zero and understates the excess 

earnings density above zero. These interpolation biases cause systematic over-rejection in the left 

standardized difference test and systematic under-rejection in the right standardized difference test 

in this simulation. Therefore, the reported rejection rates in the left (right) standardized difference 

test should be interpreted as an upper (lower) bound on the actual statistical power of these tests.9  

Our main two-stage tests improve these rejection rates by 1.3–29.3 percentage points, as 

represented by the grey bars in Figure D1.10 For example, for 𝜋0
𝑡𝑟𝑢𝑒 = 0.05 and 𝑁 = 5,000 in 

 
7 When the rejection rate is 5%, the total number of rejections in 1,000 simulations is a binomial random variable with 

𝑛 = 1,000 and 𝑝 = 0.05. The corresponding 95% confidence interval for the rejection rate is [3.6%, 6.4%].  
8 Small pre-managed losses are approximately 10.7% of the 𝑁 earnings observations in the interval [−0.04, 0.04). 

Therefore, when 𝜋0
𝑡𝑟𝑢𝑒 = 0.025, the expected number of managed small losses per sample is approximately 

0.107 × 0.025 × 5,000 = 13.38 for 𝑁 = 5,000 and 0.107 × 0.025 × 30,000 = 80.25 for 𝑁 = 30,000. 
9 Our method addresses this source of bias by directly modeling the curvature of the distribution through the 

polynomial approximation. Further, even if a researcher negligently uses a bad approximation (including the 

unreasonable examples shown in Figure 5), our method is less sensitive to bad approximation quality than the standard 

tests because the approximation biases below and above zero partly offset each other in our combined test statistic.    
10 Because the rejection rates in the left standardized difference test in these simulations are biased upward due to 

interpolation bias, the reported improvement over this test in Panel A of Figure D1 should be viewed as a lower bound 

on the actual improvement in test power. Similarly, because the rejection rates in the right standardized difference test 

are biased downward, the reported improvement in Panel B should be viewed as an upper bound on the actual 

improvement.  
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column 3, the rejection rates improve from 36.5–44.3% in the standardized difference tests to 

52.2–57.5% in our method. Notably, the improvement is larger when we use a finer bin grid (the 

darker grey bars in Figure D1), and it gradually approaches the upper bound of potential test 

performance, approximated by the ML results (the black bars). For example, when the bin width 

is 0.005, the power improvement for our two-stage tests is on average 78% as large as that for ML; 

when the bin width is reduced to 0.0025 and 0.001, the ratio increases to 92% and 98%, 

respectively.11 Thus, our main method performs almost as well as ML without any of ML’s 

numerical complications.  

In untabulated simulations, we examine earnings management scenarios with asymmetric 

small-loss and small-profit intervals (𝐾− = 0.01, 𝐾+ = 0.005; and 𝐾− = 0.005, 𝐾+ = 0.01). 

Even when our main method uses incorrect interval definitions 𝐾− = 𝐾+ = 0.01 in estimation, it 

outperforms the standardized difference tests in most cases. With correct asymmetric interval 

definitions, it dominates in all cases. 

Next, we assess to what extent the test power improvement in our method can be attributed to 

(1) our polynomial approximation, which is more accurate than the standard linear interpolation, 

and (2) our overidentifying restriction from Panel C of Figure 1, which combines information from 

excess small profits and missing small losses. To isolate the first channel, we replace the 

polynomial approximation with a linear approximation (option degree(1) in our Stata command), 

and we keep the earnings management specification of Model II. We use narrower estimation 

intervals [−0.015, 0.015) and [−0.02, 0.02) for these tests because linear interpolation over the 

main estimation interval [−0.04, 0.04) in untabulated exploratory simulations is highly vulnerable 

to distribution non-linearities and often has excessive Type-I errors. To isolate the second channel, 

we relax our model’s overidentifying restriction on small losses and small profits by replacing the 

earnings management probability parameter 𝜋0 with two separate probability parameters: one for 

the missing small losses and another one for the excess small profits. We use an F-test to assess 

the joint significance of these two parameters, and we keep the cubic polynomial approximation 

and all other empirical settings from our main Model II estimates. To further explore the role of 

model restrictions, we next remove all of Model II’s earnings management structure and estimate 

eight unconstrained parameters for the individual small-loss and small-profit bins following Chetty 

et al. (2011). We jointly test these eight parameters using an F-test. For brevity, we present the 

results only for bin width 0.0025 (the results are robust to alternative bin width definitions). 

Table D2 presents the simulation results. When we replace the polynomial approximation with 

a linear interpolation in a narrower estimation interval, there is only a slight decrease in test power 

(0.4–1.1 percentage points and 2.3–3.5 percentage points for the larger and smaller estimation 

intervals in Table D2, respectively, compared to our main Model II tests12). In contrast, when we 

relax the overidentifying restriction that the total probability of excess small profits must equal the 

total probability of missing small losses (test A in Table D2), there is a considerably larger decrease 

in test power (5.0–8.6 percentage points). When we estimate eight unconstrained parameters for 

the individual small-loss and small-profit bins following Chetty et al. (2011), thus entirely 

 
11 Bin width = 0.001 can increase the estimation time considerably because it increases the number of firm-year-bin 

observations in estimation, and the computational burden of major estimation steps such as sorting is non-linear with 

respect to data size.   
12 Everywhere in this paragraph, we exclude scenario (6) from the computation of percentage point differences. The 

rejection rates in all tests for scenario (6) are very close to the upper bound of 100% because both the sample size and 

the effect size are large. Therefore, the measured differences in statistical power across tests are predictably miniscule 

even when one test performs much better than another. 
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dismantling the model structure in the small-loss and small-profit intervals (test B in Table D2), 

there is an even larger decrease in test power (7.5–30.7 percentage points). Further, in most cases 

this approach performs worse than the standardized difference tests because, in addition to not 

using the overidentifying restriction on missing small losses and excess small profits, it carves up 

the small-loss and small-profit intervals into multiple unconstrained estimates.                    

Thus, the overidentifying restriction on small losses and small profits is important for our 

method’s statistical power, whereas the polynomial approximation is relatively less important. 

However, the polynomial approximation can be implemented just as easily as a linear 

approximation through the degree() option in our Stata command, and it offers slightly better test 

power in all scenarios in Table D2. Further, the polynomial approximation is a priori much more 

appropriate than a linear approximation in scenarios in which the discontinuity is near the peak of 

a distribution, especially when the distribution has high curvature (untabulated simulations 

confirm that the polynomial approximation improves test performance considerably in such 

scenarios). Therefore, we recommend that researchers use the polynomial approximation instead 

of the more restrictive linear interpolation.  

In summary, our method offers a sizable power improvement relative to the standardized 

difference tests. The primary reason for this improvement is the overidentifying restriction that 

missing small losses must be consistent with excess small profits (Panel C of Figure 1), while the 

polynomial approximation plays a smaller role. Thus, even a researcher who only wants to conduct 

standard Burgstahler and Dichev (1997) discontinuity analysis without any explanatory variables 

could benefit from our method, especially when the sample size and/or effect size is small. This 

advantage is less important in a large sample (e.g., column 6 in Table D1), where the standard 

Burgstahler and Dichev (1997) tests often have sufficient power.13 

  

 
13 Even when the pre-managed distribution and meet-or-just-beat behavior vary with X, the standardized difference 

test can correctly detect the existence of distribution discontinuity. Because the pre-managed distribution conditional 

on X is smooth, the unconditional pre-managed distribution (after integrating out X) is also smooth. Because meet-or-

just-beat behavior creates a distribution discontinuity at zero conditional on X, it also creates an unconditional 

distribution discontinuity at zero. Thus, when the conditional distribution varies with X, the fundamental assumptions 

of the standardized difference test continue to hold for the unconditional distribution. The primary advantage of our 

method is that it lets researchers study multiple determinants of distribution discontinuity; the statistical power 

improvement in tests of existence of distribution discontinuity that we document in this supplement is secondary in 

importance.  
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Panel A: Improvement relative to the left standardized difference test 

 

 
Panel B: Improvement relative to the right standardized difference test 

 

Fig D1. The percentage point improvement in test power for our two-stage and ML estimates, 

relative to the standardized difference tests, based on the simulation results in Table D1 
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Table D1. Rejection rates in simulated distribution discontinuity tests without explanatory 

variables 

 Simulated sample comprises 5,000 

observations in the interval [-0.04, 0.04) 

Simulated sample comprises 30,000 

observations in the interval [-0.04, 0.04) 

true earnings management probability 𝜋0
𝑡𝑟𝑢𝑒 is  

0% 2.5% 5% 0% 2.5% 5% 

(1) (2) (3) (4) (5) (6) 

Burgstahler and Dichev (1997) standardized difference test 

left difference 6.2 22.0 44.3 6.6 59.3 97.7 

right difference 4.6 15.9 36.5 3.7 42.4 92.3 

Significance test for the earnings management probability 𝜋0 in our main Model II with 𝐾− = 𝐾+ = 0.01 

Main two-stage estimation with  

bin width = 0.005 5.2 23.3 52.2 5.3 67.7 99.6 

bin width = 0.0025 5.0 23.6 56.5 5.2 71.0 99.7 

bin width = 0.001 5.6 23.9 57.5 5.4 71.7 99.8 

ML estimation 5.1 23.9 58.9 5.6 72.0 99.8 

The table presents the rejection rates in one-tailed tests with a 5% nominal significance level in 1,000 simulated 

samples. For the Type-I errors in columns 1 and 4, the 95% confidence interval is 3.6% to 6.4%. The simulated 

distribution of pre-managed earnings follows the estimates from column 4 of Panel A in Table 2, and the simulated 

earnings management process follows Model II with the true earnings management probability 𝜋0
𝑡𝑟𝑢𝑒 set to 0, 0.025, 

or 0.05. In estimation for the simulated data, the estimation interval is [-0.04, 0.04), the small-loss and small-profit 

interval width is 0.01, and the bin width for earnings discretization in the two-stage method varies from 0.005 to 0.001. 

The code fragment for the two-stage estimation is: 

kinkyX simNI, binwidth(0.005) est_bins(8) em_bins(2) em_type(ii) degree(3) cluster(gvkey) 
kinkyX simNI, binwidth(0.0025) est_bins(16) em_bins(4) em_type(ii) degree(3) cluster(gvkey) 
kinkyX simNI, binwidth(0.001) est_bins(40) em_bins(10) em_type(ii) degree(3) cluster(gvkey) 
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Table D2. Rejection rates for alternative empirical models in simulated distribution 

discontinuity tests without explanatory variables 

 Simulated sample comprises 5,000 

observations in the interval  

[-0.04, 0.04) 

Simulated sample comprises 30,000 

observations in the interval  

[-0.04, 0.04) 

true earnings management probability 𝜋0
𝑡𝑟𝑢𝑒 is  

0% 2.5% 5% 0% 2.5% 5% 

(1) (2) (3) (4) (5) (6) 

Main Model II tests from Table D1 

bin width = 0.0025 5.0 23.6 56.5 5.2 71.0 99.7 

Replace Model II’s polynomial approximation with a linear approximation on a narrower estimation interval 

[-0.015, 0.015] 4.6 21.3 53.4 4.7 67.5 99.3 

[-0.02, 0.02] 5.0 22.8 56.1 4.3 69.9 99.5 

Relax Model II’s overidentifying restrictions on small losses and small profits 

Test A: Remove the restriction that 

managed small losses must 

become small profits, but keep 

all other structure of Model II 

4.4 18.6 49.0 6.7 62.4 99.3 

Test B: Use unrestricted bin 

dummies for each of the small-

loss and small-profit bins, 

following Chetty et al. (2011) 

5.6 16.1 31.3 4.8 40.3 95.6 

The table presents the rejection rates in one-tailed tests with a 5% nominal significance level in 1,000 simulated 

samples. For the Type-I errors in columns 1 and 4, the 95% confidence interval is 3.6% to 6.4%. The simulated 

distribution of pre-managed earnings follows the estimates from column 4 of Panel A in Table 2, and the simulated 

earnings management process follows Model II with the true earnings management probability 𝜋0
𝑡𝑟𝑢𝑒 set to 0, 0.025, 

or 0.05. In all models, the bin width for earnings discretization is 0.0025 and the small-loss and small-profit interval 

width is 0.01. For the tests with linear approximation, we use narrower estimation intervals [-0.015, 0.015) and [-0.02, 

0.02) because linear approximation for the main estimation interval [-0.04, 0.04) in untabulated exploratory tests is 

highly vulnerable to distribution non-linearity. The code fragment for the linear approximation tests is kinkyX simNI, 
binwidth(0.0025) est_bins(n) em_bins(4) em_type(ii) degree(1) cluster(gvkey), where the number of estimation bins 

n is 6 for the interval [-0.015, 0.015) and 8 for the interval [-0.02, 0.02). The tests after relaxing Model II’s 

overidentifying restrictions on small losses and small profits in the last two rows use a cubic polynomial approximation 

over the estimation interval [-0.04, 0.04), similar to the main estimates, and use modified estimation code with 

additional earnings management parameters. The distribution discontinuity test in these scenarios is a joint F-test of 

all relevant parameters (i.e., two separate parameters for missing small losses and excess small profits in test A, and 

eight separate parameters for individual small-loss and small-profit bins in test B).  


